모바일  |   유튜브  |   facebook  |   newsstand  |   과거신문보기   |  
2022년 01월 18일 (화)
전체메뉴

차세대 뉴로모픽 반도체 핵심소재 국내 최초 개발

한국재료연구원 권정대·김용훈 박사 연구팀
신경 시냅스 모방해 94% 패턴 인식

  • 기사입력 : 2021-10-20 08:07:18
  •   
  • 한국재료연구원이 차세대 뉴로모픽(신경 네트워크 모방) 반도체 핵심소재를 개발해 눈길을 끌고 있다. 재료연구원은 에너지전자재료연구실 권정대, 김용훈 박사 연구팀이 충북대 조병진 교수 연구팀과 함께 차세대 뉴로모픽 반도체에 들어가는 핵심소재를 국내 최초로 개발했다고 18일 밝혔다.

    이 기술은 수 나노미터 두께의 2차원 나노소재를 이용해 신개념 멤트랜지스터 소자를 구현한 것이라고 재료연은 설명했다.

    권정대 박사
    권정대 박사
    김용훈 박사
    김용훈 박사

    멤트랜지스터는 ‘메모리’와 ‘트랜지스터’의 합성어로, 연구팀은 1000번 이상의 전기자극으로 신경 시냅스의 전기적 가소성을 재현성 있게 모방해 약 94.2%(시뮬레이션 기반 패턴 인식률 98%)의 높은 패턴 인식률을 얻는 데 성공했다.

    반도체 소재로 널리 사용되는 몰리브덴황(MoS2)은 단결정 내에 존재하는 결함이 외부 전계에 의해 움직이는 원리로 작동된다.

    하지만 이는 결함의 농도나 형태를 정밀하게 제어하기 어려워 연구팀은 산화니오븀(Nb2O5) 산화물층과 몰리브덴황 소재를 순차적으로 적층하는 방법으로 해법을 모색, 외부 전계에 의한 높은 전기적 신뢰성을 갖춘 멤트랜지스터 구조의 인공 시냅스 소자를 개발했다. 또한 10피코줄(pJ)의 매우 낮은 에너지로도 기억 및 망각과 관련된 뇌의 정보를 처리할 수 있음을 입증했다.

    현재 인공지능 하드웨어는 소비전력과 비용부담이 큰 GPU(그래픽스 처리장치)와 FPGA(프로그램이 가능한 비메모리 반도체 일종), ASIC(주문형 반도체) 형태로, 향후 산업 성장에 따라 폭발적인 수요가 기대된다. 웨어러블 인공지능 시장은 2018년 기준 약 115억달러에서 연평균 성장률 29.75%에 달해 2023년에는 424억달러에 육박할 것으로 예상되고 있다.

    재료연 권정대·김용훈 박사 연구팀은 “고신뢰성의 신개념 멤트랜지스터 구조 기반 인공지능 반도체 소자가 활용될 경우, 회로 집적도 및 구동 에너지를 크게 줄일 수 있다”며 “향후 저전력 엣지 컴퓨팅 및 웨어러블 인공지능 시스템에 적용이 기대된다”고 말했다.

    이번 연구결과는 세계적인 학술지인 어드밴스트 펑셔널 머티리얼즈誌에 10월 1일자 표지논문으로 게재됐다.

    김정민 기자

  • < 경남신문의 콘텐츠는 저작권법의 보호를 받는 바, 무단전재·크롤링·복사·재배포를 금합니다. >
  • 김정민 기자의 다른기사 검색
  • 페이스북 트위터 구글플러스 카카오스토리